\(\int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx\) [353]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 223 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {2 \left (7 b^2 B+9 a (2 A b+a B)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 \left (7 a^2 A+5 A b^2+10 a b B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (7 a^2 A+5 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 \left (7 b^2 B+9 a (2 A b+a B)\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 b (9 A b+11 a B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{63 d}+\frac {2 b B \cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{9 d} \]

[Out]

2/15*(7*b^2*B+9*a*(2*A*b+B*a))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^
(1/2))/d+2/21*(7*A*a^2+5*A*b^2+10*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x
+1/2*c),2^(1/2))/d+2/45*(7*b^2*B+9*a*(2*A*b+B*a))*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/63*b*(9*A*b+11*B*a)*cos(d*x+
c)^(5/2)*sin(d*x+c)/d+2/9*b*B*cos(d*x+c)^(5/2)*(a+b*cos(d*x+c))*sin(d*x+c)/d+2/21*(7*A*a^2+5*A*b^2+10*B*a*b)*s
in(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3069, 3102, 2827, 2715, 2720, 2719} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {2 \left (7 a^2 A+10 a b B+5 A b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (7 a^2 A+10 a b B+5 A b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}+\frac {2 \left (9 a (a B+2 A b)+7 b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 \left (9 a (a B+2 A b)+7 b^2 B\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{45 d}+\frac {2 b (11 a B+9 A b) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{63 d}+\frac {2 b B \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))}{9 d} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]),x]

[Out]

(2*(7*b^2*B + 9*a*(2*A*b + a*B))*EllipticE[(c + d*x)/2, 2])/(15*d) + (2*(7*a^2*A + 5*A*b^2 + 10*a*b*B)*Ellipti
cF[(c + d*x)/2, 2])/(21*d) + (2*(7*a^2*A + 5*A*b^2 + 10*a*b*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (2*(7
*b^2*B + 9*a*(2*A*b + a*B))*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(45*d) + (2*b*(9*A*b + 11*a*B)*Cos[c + d*x]^(5/2)
*Sin[c + d*x])/(63*d) + (2*b*B*Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])*Sin[c + d*x])/(9*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3069

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*
x])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f
*x])^n*Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c
- b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m
, 1] &&  !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b B \cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{9 d}+\frac {2}{9} \int \cos ^{\frac {3}{2}}(c+d x) \left (\frac {1}{2} a (9 a A+5 b B)+\frac {1}{2} \left (7 b^2 B+9 a (2 A b+a B)\right ) \cos (c+d x)+\frac {1}{2} b (9 A b+11 a B) \cos ^2(c+d x)\right ) \, dx \\ & = \frac {2 b (9 A b+11 a B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{63 d}+\frac {2 b B \cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{9 d}+\frac {4}{63} \int \cos ^{\frac {3}{2}}(c+d x) \left (\frac {9}{4} \left (7 a^2 A+5 A b^2+10 a b B\right )+\frac {7}{4} \left (7 b^2 B+9 a (2 A b+a B)\right ) \cos (c+d x)\right ) \, dx \\ & = \frac {2 b (9 A b+11 a B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{63 d}+\frac {2 b B \cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{9 d}+\frac {1}{7} \left (7 a^2 A+5 A b^2+10 a b B\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{9} \left (7 b^2 B+9 a (2 A b+a B)\right ) \int \cos ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {2 \left (7 a^2 A+5 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 \left (7 b^2 B+9 a (2 A b+a B)\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 b (9 A b+11 a B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{63 d}+\frac {2 b B \cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{9 d}+\frac {1}{21} \left (7 a^2 A+5 A b^2+10 a b B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{15} \left (7 b^2 B+9 a (2 A b+a B)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 \left (7 b^2 B+9 a (2 A b+a B)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 \left (7 a^2 A+5 A b^2+10 a b B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (7 a^2 A+5 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 \left (7 b^2 B+9 a (2 A b+a B)\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 b (9 A b+11 a B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{63 d}+\frac {2 b B \cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{9 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.05 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.75 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {84 \left (18 a A b+9 a^2 B+7 b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+60 \left (7 a^2 A+5 A b^2+10 a b B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} \left (7 \left (72 a A b+36 a^2 B+43 b^2 B\right ) \cos (c+d x)+5 \left (84 a^2 A+78 A b^2+156 a b B+18 b (A b+2 a B) \cos (2 (c+d x))+7 b^2 B \cos (3 (c+d x))\right )\right ) \sin (c+d x)}{630 d} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]),x]

[Out]

(84*(18*a*A*b + 9*a^2*B + 7*b^2*B)*EllipticE[(c + d*x)/2, 2] + 60*(7*a^2*A + 5*A*b^2 + 10*a*b*B)*EllipticF[(c
+ d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(7*(72*a*A*b + 36*a^2*B + 43*b^2*B)*Cos[c + d*x] + 5*(84*a^2*A + 78*A*b^2 +
156*a*b*B + 18*b*(A*b + 2*a*B)*Cos[2*(c + d*x)] + 7*b^2*B*Cos[3*(c + d*x)]))*Sin[c + d*x])/(630*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(609\) vs. \(2(255)=510\).

Time = 14.21 (sec) , antiderivative size = 610, normalized size of antiderivative = 2.74

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-1120 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+\left (720 A \,b^{2}+1440 B a b +2240 B \,b^{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-1008 A a b -1080 A \,b^{2}-504 B \,a^{2}-2160 B a b -2072 B \,b^{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (420 A \,a^{2}+1008 A a b +840 A \,b^{2}+504 B \,a^{2}+1680 B a b +952 B \,b^{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-210 A \,a^{2}-252 A a b -240 A \,b^{2}-126 B \,a^{2}-480 B a b -168 B \,b^{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 A \,a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+75 A \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-378 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +150 B a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-189 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-147 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}\right )}{315 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(610\)
parts \(\text {Expression too large to display}\) \(820\)

[In]

int(cos(d*x+c)^(3/2)*(a+cos(d*x+c)*b)^2*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1120*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^
10*b^2+(720*A*b^2+1440*B*a*b+2240*B*b^2)*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-1008*A*a*b-1080*A*b^2-504*B
*a^2-2160*B*a*b-2072*B*b^2)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(420*A*a^2+1008*A*a*b+840*A*b^2+504*B*a^2+
1680*B*a*b+952*B*b^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-210*A*a^2-252*A*a*b-240*A*b^2-126*B*a^2-480*B*
a*b-168*B*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+105*A*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1
/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+75*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-378*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+150*B*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-189*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-147*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/si
n(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.22 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {2 \, {\left (35 \, B b^{2} \cos \left (d x + c\right )^{3} + 105 \, A a^{2} + 150 \, B a b + 75 \, A b^{2} + 45 \, {\left (2 \, B a b + A b^{2}\right )} \cos \left (d x + c\right )^{2} + 7 \, {\left (9 \, B a^{2} + 18 \, A a b + 7 \, B b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 15 \, \sqrt {2} {\left (7 i \, A a^{2} + 10 i \, B a b + 5 i \, A b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 \, \sqrt {2} {\left (-7 i \, A a^{2} - 10 i \, B a b - 5 i \, A b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 \, \sqrt {2} {\left (-9 i \, B a^{2} - 18 i \, A a b - 7 i \, B b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 \, \sqrt {2} {\left (9 i \, B a^{2} + 18 i \, A a b + 7 i \, B b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{315 \, d} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/315*(2*(35*B*b^2*cos(d*x + c)^3 + 105*A*a^2 + 150*B*a*b + 75*A*b^2 + 45*(2*B*a*b + A*b^2)*cos(d*x + c)^2 + 7
*(9*B*a^2 + 18*A*a*b + 7*B*b^2)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 15*sqrt(2)*(7*I*A*a^2 + 10*I*B
*a*b + 5*I*A*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 15*sqrt(2)*(-7*I*A*a^2 - 10*I*B*
a*b - 5*I*A*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*sqrt(2)*(-9*I*B*a^2 - 18*I*A*a
*b - 7*I*B*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*sqrt(2)
*(9*I*B*a^2 + 18*I*A*a*b + 7*I*B*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d
*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*cos(d*x+c))**2*(A+B*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 1.52 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.18 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx=\frac {2\,A\,a^2\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}-\frac {2\,B\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,A\,b^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,b^2\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,A\,a\,b\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,B\,a\,b\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(3/2)*(A + B*cos(c + d*x))*(a + b*cos(c + d*x))^2,x)

[Out]

(2*A*a^2*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) - (2*B*a^2*cos(c + d*x)^(7/2)*
sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*A*b^2*cos(c + d*x)
^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (2*B*b^2*cos(c
 + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2)) - (4*A
*a*b*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))
 - (4*B*a*b*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)
^(1/2))